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A FUNCTIONAL EXPANSION APPROACH TO TIlE SOLUTION OF NONLINEAB FEEDBACX SYSTIS4S4

Ras-Nandan P. Sinqh
Timothy I.. Johnson

Laboratory for Informa tion and Decision Systems
Department of Electrical Engineering and Computer Science

Massachusetts Institut, of Technology
• Cambridge, Massachusetts 02139

abstract sin .7(U) — I (U~U + g(x))dt (2)

This paper presents two results: (i) a new where for t~~t<tf I U(t)cU, *(x ) and f(x ) ar. vector
structure for the solution of nonlinear analytic polynemial. in Z; A and B are n by n end n by rsystems, and (ii) an application of Bellman s matrices resp ctively. N~ ( i l 12~ .. .,n) are ~~~Fundamental Technique to obtain the sub-optimal-
feedback control of a- class of quasilinear systems trices representing mappings defined as follows:
with non-quadratic performance indices. The ap-
plication of the Fundamental Technique with a N~: R~ -‘ R~. The vectors ei(i~

1,2, . . . ,n) are the
linear auxiliary equation is shown to result in standard basis vectors; and g lx) is an entire
higher order approximating equations which are function of x, in general. 

~ - 
)linear , Using the method by separation of vaxi— 

~ 
Cx) + } •jUHj  f Cx)ables, two examples are solved. i—i

Assumption (A): Assume that F1(x ,u) satisf ies the
1. Introduction . following conditions:

(i) The nonlinear function PThe determination of an optional feedback 1(x,u) is continuous
control law for a nonlinear systems is an impor— and its first partial derivatives are also
tant problem in engineering. The method of dy— continuous.
manic progranming yields the feedback solution (ii) u n  4i(x) — Or him F~ Cx) 0 uniformlydirectly. Unfortunately this method reduces the 

~ I.’o IxI÷oproblem to solving a nonlinear partial differential
equation . This is a complex problem, in general. for tElt0?tfJ ( j F 1(x, u ) f (
However, the solutions of feedback problems for 

__________(iii) u n  0 uniformly forlinear finite-dimensional systems with a quadratic I I (x,u) ~90 (x,u) 
~criterion (known as L-Q problems) are available

( 1—3 ) . A more difficult problem than the usual tt(t0~tf)L-Q problem has been mentioned by Anderson and where, (c,u)~C, and C denotes the Banach space of
Moore f3—p.221 .. and Moylan and Anderson (41 . The continuous functions (k,u): (t0,

t )-.R~ x R
r withsolutions of the nonlinear partial—differential

equations resulting from the applications of dy- the usual sup norm ,
manic programming to such problems are unresolved n
in general. However, for this particular problem II (x,u)Jj sup ~ Jx .(t) + u (t)~ :2. :1~1(33 , which involves a linear system with a non— t ~im1
quadratic performance index, the exact solution is
available [5). The close examination of this an-
alytical solution reveals the complexity both in II 1(x~u) IJ sup 

~ltderiving the exact feedback law as well as in
implementing it. (iv) The linear time—invariant system

In this paper, a method is developed to obtain •- — — —
x A x + B U; x(tan asymptotic solution of the feedback laws for 0~

more general problems. is uniformly completely controllable in the sense
2. Problem and Detailed Analysis of ICa lman (71 for bounded coefficients A and B.

n Here the over-bar denotes variables corresponding
X m Ax#Bu + ~t’( x) + L e~UN1f(x); x(t0) x0 Ii) to the linear part of system (1) only.

i If all the conditions cited above are satis—
*e~~ j~~ roscarch has been supported by the National fied by system (1), then the quasilinear system
Science Foundation, Grants NSF 77—05200 and NSF (1) is uniformly controllable (83 .
77-2844, and the U.S. Air Force Office of Scien-

Assurnption (8): Assume that gCx) satisfies the
• tific Research, Grant 77—3281. following conditions:

78 12 2 1 Approved for public release ;
distribution unlimited.
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(i) g(z) is even and positive in x, 

2 

order partial iffc~~ntia1 equation. Under the 

- -

assumptions (A) and (B), the Cauchy—Nowaleswk i(ii) g(x) is continuous and its first derivative 
Theorem (9] guarantees a unique local analyticis also continuous and monotonically increasing 
solution of equation (7) • However, in general ,for positive x. 
the solution of equation (7) cannot be obtained in

(iii) him g(x) — 0 uniformly for tc(t0.t~3 a closed form .
Ix f-’o Since the solution of equation (7) is analytic,t (iv) g Cx) i~ analytic in a. 

the Cauchy-Xowalewski Theorem motivates the appli—
Now we apply the method of dynamic programming cation of a regular perturbation expansion of the

to system (1-2) in order to obtain the optimal complete solution to obtain the approximate
feedback law for the system. solution. 3. The Bellman Fundamental Technique 

- - 

~
, 7

The basic Hamilton-Jacobi equation for the Thus, to obtain the optimal feedback solution
above system can be written (33 as U* (X) , we have to solve equat ion (7) with the

terminal condition (B) . Zn this section, we ~~~..

- + (As + BLI + *(x) + apply Bellman’s Fundamental Technique (LO;p.2) to
the solution of Hamilton-Jacobi-Bellman equation

- . (7) but using a nonlinear (rather than linear)n 
auxiliary equation. The philosophy behind the+ ~ e,u\f (a) ) 
Fundamental Technique has been explained by Bell- .i—I
nan (10] for the solution of nonlinear proble ms

V C xC t f ) .  tf
) — 0 (4) using a standard equation (called auxiliary equa-

tion which is linear and whose solution already is
well known. The central idea of the Fundamentalwhere the function V(x(t)  ,t) is assumed to be a Technique was thus demonstrated by obtaining anscalar function satisfying the conditions °~ infinite set of linear equations as a solution toLiapunov’ a Theorem on asymptotic stability (6] , the given nonlinear problem.and is twice continuously differentiable.

Zn this paper, the solution of a nonlinearIt can be shown that the minimizing control system is desired using a nonlinear auxiliaryfor equation (3) is given by 
equation whose solution is well-known. The method
yields an inf inite set of linear equations as an

— ~ (B’
~
’ 

~~ + 

~~~~ 
Ni ~~ —) f Cx)) 

equivalent solution to the original problem. The

U*( x) ~ G(V(x) 1 (6) proximating equations are linear equations~ and

salient features of the solution obtained are the
following: (i) the first approximating equationassuming the above inverse exists. Compactly, we is nonlinear and has structure similar to that ofcan write the above expression as the auxiliary equation, (ii) the subsequent ap-

(iii) all the equat ions are recursively connected .
where G represents the optimal feedback opera tor. The motivation for extending the applicationSubstituting equation (5) into equation (3), we get of the Fundamental Technique using a nonlinear

u T 
~~~~ + ~~~~

— Ax 4 g(x) + 
auxiliary equation lies in the fact that the form

-~~~~~~ -~~~-~~~B3 ~~ of the nonlinear auxiliary equation used in the
technique is closer to the form of the nonline arn

~ ( 1 (
~~ 

~V fT ( T T 8sr 3 problem (which is to be solved) than any form ofx)N~ )B  ~~— — ~~
- —r~ B~ linear auxiliary equation. Hence this should

yield more rapidly convergent approx imations to
the exact solution. Further , the result s of the

~~~~
— N~f Cx)) )  linear quadratic theory (L-Q Theory) can be ax-i—u i ploited to achieve this goal.

n n

~~~~~ ~ 

V fT()NT)N f(x) (7) Now we define some notation which is to be4 . 3x used in the analysis which follows.

Define nonlinear operators H and C as
with the terminal condition V(X(t

f
) ~tf

) = 0. (8) if: V ~ C;
The differential system ( 7 ) — ( B )  is called whereHamilton—Jacobi-Bellman (H-J-B) equation and re-

presents a first order partial differential aqua- V: R~ a [t0,t~] ~ Er C : R
tion with one dependent variable V(x, t ) , and two
independent variables x and t. H: ~ (R

m , lt0S tf fl ÷ C’1R’~J

The results can be summarized en follows. Consider a nonlinear system characterized by
Theorem 1. Let the quasi linear systems ( l ) — ( 2 )  H(vJ — G (9)satisfy assumption (A) and (B). Then the optimal
feedback control for the system is given by (5) Assune the nonlinear operator H is analytic in Vafter solving (7). and is thus continuously d if ferential with respect

Obviously, equation (7) is a nonlinear first to V(•). 

. 

~~~~~~~~~~~~~~~~~ ——~~~~~~~~~~~ -— -
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Th. function V(z) , we have in mind, is th. At the same time f2 
(e) is also analytic in ~ and

solution of equation (9) . hence it can be expanded as a Taylor ’s series about
Assume en auxiliary equation with appropriate c-0. This yields a power series in as given

boundary conditions: below:
I(1(v) — (10) f 2 (s) f ~~ 10+cV1+c2V2+...; x) —

whose solution is known. For example, this sux- + tN1(V0,V1, x)+... (14)
iUary equation may have a form whose solution can
be found using a P.iccati equation or Bernoulli where N0, N~,... are Taylor ’s series coefficients
equation or some other known nonlinear e~ zations. of the functional H

2
(V) ,  and can be also obtainedZn general, the auxiliary equation may be linear

or nonlinear. The application of the Tundamental by constructing a power series of (V) in ~~.

Technique using a linear auxiliary equation has Now we ~roceed to obtain an expansion of the ¶
already been presented (101. Here we shall deal t~~~Uonal (VJ in c. Since H (VI is analyticwith a nonlinear auxiliary equation in the Funda- 1 1
mental Technique. Zn general, the highest degree in still for fixed V0, V1, V2,...,V ,..., this
of nonlinearity present in the auxiliary equation f~~~tional becomes an ordinary function of e. Thus- - . may be the same (if possible) or lower than that
of the original nonlinear equation (9) . 

~~(~ ) H1~v0 + + c2v2 + ...) (15)
Using equation (10) , we can ‘svrite equation

(9) as in analytic in c about t—0.

~ or called the expansion an “Extension of Taylor ’s ¶
(V) 1. ( H(v3 — H~(vj )  — + The Taylor’s series expansion of a functional

has been constructed by Volterra (l1;p.24 1 and be 4

Theorem” to a class of functionals. ExploitingH1(vi — + H2(VJ , where the expression his ideas, we state a lessna as follows:

~ U(~(V) - H(vi + G- (11) L~~~a 1: Assuming the functional is continuous
and differentiable on a class of functions over

Introduce a small positive artificial param— - the interval Ea,bJ . Then the Taylor’s series cx—
eter e in the above expression. Here £ is a pa— pansion of the functional H

1 ~v Ct) ) can be expres—
rameter whose nominal value is one. This is be— sod as
sically a perturbation parameter that can enter 

~ = 0
1CV0J +E L

1(V13+c2 L
2 IV )+.. .+t ’~ L (V 1+...the expression (11) in various combinations and 1 2 n i t

powers of as demanded by a particular problem. (16)
The placing of c in (11) offers high manipulating wherepower to the Fundamental Technique for solving
complex nonlinear problems. In general , the in— 1~ (v0) , L~ (v1) , .. . , L ~v ),.. .a ntroduction of this small positive perturbation
parameter m a y  be necessa ry even though the system are the Taylor ’s series coefficients having the
equation (9) may contain one or more small positive following properties: H1(v0) is a nonlinear func—
system parameters. However , in special cases , the
role of this perturbation parameter may be played tion of v0; L1 (V1) is a linear function of
by a email positive physical parameter that may L2 (v2j is a linear function o~ V2; and so on.
enter the system naturally.

- Proof: We calculate terms of the Taylor’s seriesFor brevity of presentation , let us introduce expansion of a functional as defined by Volterrathis artificial parameter in the foYiowing form ; (11;p.24) .
• H11vJ — C1 + sH2 (v) (12) The first term is given by

Thus , this is the required format of the Fuodamen- if
1 (Vi I — if1~v0J ~~

tel Technique.

Since the nonlinear system (11) has been as— The second tern has been defined as
sumod to be analytic in V ( • ) ,  the solution function b -

_________________can be expressed as (~~ H
1CV +e$) ) — f H ’(v0+cO ; C1

) —j~-—-------- dC1 ic0 a 5—0
4 ... (13)

where H ’(y J denotes the first derivative of the
where V

0
, V1,.. .,V ... are independent of ~. For functional with respect to V at the point E~~. Here

fixed 
~~~ 

V1, Vi,... , the nonlinear operator H2 !.) in a para meter which varies continuously within

itself becomes an ordinary function 111) of c. (a,bJ ; and in our case ,
Thus
f ( )  . H2 (vj 6 ~ + t V2 + c2 V3 + ... (17)

I
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Substituting the value of $ in the above expres- the Riccati matr ix equation
sion and evaluating at e-0 , we get

1C X B B T K~~~~(KA + A’
~~)~~~ Q: K( t f J 0  (22) —

(~~ H~(~0~C$I ) = I K~ tV0; çJV1(ç)d ç (ii) Assuming equation (20) to be an auxiliary equationo.O b for the solution of nonlinear equation (7) , we can
Clearly for a given V0, we write (ii) as a apply the Fundamental Technique to obtain th. so—

linear function of V Thus lution of equation (7) .

Now observe that the term xTQx is not Present
L1(V11 = tNjtVoa çJv1(ydç. in equation (7). Hence we shall add and subtract

this tent in equation (7) in order to obtain anSimilarly, we have the third term
d2 b b equation with the standard format (12). Thus equa-

tion (7) can be converted to the form of squatic a
~
-i 03 Iv) ) = I I Iç tV0~ C11C3)V1(C1

) (12) as follows . -dc D~0 a a
b 1~~~ T T ? ~

• / - 
V
1(~2)dç dC2 + 2~ f H~(v0; C1)V 2 (C 1)dC1 (iii) ~ ~~ 

— ‘~ — ~~~• xT
~x +

For given V0 and V1, (iii) is a linear function V(x(t~)1t~) — 0 (23)

of V2 . Q.LD. where
Theorem 2 Assume that the auxiliary equation 

Cx) ~ 
if,

2 (V x) ~ T av(10) has a known form, of solution. The nonlinear H — g Cx) - x Qx + — -
system (9) can be inbedded into an infinite set of ~ 

-.

recursive equations with appropriate boundary con- n nditions : i. 3V T T
C 1 fT

( ) N
T)N f( ) )  + 4J1 ~~~ 

f (x)N~ )
01(V03 — i—i i

T a V  3~~~T it
L11V11 H0 (V0;J n 1, 2 . . . .  B ~~—~~—~~( I  ~~

_ N
~f(x))]. (24)

- i—i
~~V23 — N1

(V0,V1
;) 

• Now we can substitute equation (13) in equa-
tion (23) and equate the coefficients of vatious

L ( V I  — N 1(V0~V1~ ...~ V~_1;1 (18) powers o f t .  Using equation (18), the followingn f l  n equations are obtained:

Proof: Using Leimsa (1) and equation (14), we can T a 
~~0 T

~~~~~ nonlinear system (9) in its standard format : —
~~~~- 83 —~~~~ — —

~~— Ax - -~~~~~ x Qx
(12). Equating coefficients~~~ c

m, equation (18)
follows. 1 . T 1 T ~~1 

~~

Equation (18) represents the basic structure C : ~ ~~~~
— BB + 

~ 
-.~~~~— BB ~~~~

— - .- ~~~~
. Ax —

of the solution of a nonlinear system using a non- aVlinear auxiliary equation in the Fundamental Tech-
nique. This has been schematically represented in — — N0 (V0;x) (25)

Figure 1.
The following steps are involved in the method : 2 3. __2 BET ~~0 1 T 1 T

4 x ~~ 
+ 

~~ 

BE —~~~~ + ~ -
~~~~~ BB

1. Choose an auxiliary equation (10). 2. Define
a nonlinear function H CV] (11). 3. Put the ~~T
problem in the format ~l2) . 4. Obta in equation — —~~ AX - -~~~~ N1 (V0, V~ ; x)

• (18) sta rti ng from equation (12) . 5. Solve equa-
tion (18) and plug the solution into equation (13). avT av aVT

4. The Application of the Method S
it
: ~~ ~ 

( J~~ 38
T _A) - _..a ~ -ax 8x ax at

We shall apply the methodology of the Funda-
mental Technique to solve the nonlinear systems — N  ( V , V ,. . . ,-V 1, x )  n 1 ,2 , . . .(7) and (8). n—i 0 1 n

From the knowledge of L—Q Theory, it is well- (i) Observe that the first equation in (25) i.. a
known that nonlinear (quadratic) first-order partial differ-

ential ec~~atio~ in V0
(t) and has a well-known so—

i~~~~ BT
~~~~_~~~~~A x _ ~~~ ‘I’

4 3x B ax 3x ~~ x Qx; ~~(x (t f )~~tf — 0 lution as given by equation (2 1) . The other sub—
(20) sequent equations are linear first order partial

differential equations ~n Vhas a solution of the form i’~2’” 
respectively.

V(x(t),t) — x~
’i~(t)x (21) (ii) They are recursively connected and the

equation contains all the solutions of the previous
Here Qis a positive definite matrix which is (n—i ) equations.

known, and x(t) is a syi~netric matrix satisfying

_i ~~~ - ‘C:
~ <.i (

~ 
r



______
_ -

~~

“ 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
“ ‘

~~~~~~~~~~~~~~~ 

-
-

- 
. 

5

The above result can be summarized as follows: The solution of the first equation is

Theorem 3: Let F~ (t) ~~O for all xC~~ and system v0 Cx(t) ,t) — 3c~(t)x
2

(1) and (2) satisfy the assumptions (A) and (B) .
Then the solution of equation (7) can be used to where the gain K0(t) is the solution of the Ric—
construct the opt imal feedback control as cati equation

T P J dK0(t) 2U5 (x) — (B + ~ N~ t ( x)3  (26) 
dt — X0(t) + 1 — 0; K(T) — 0

using equat ion (6) , we can write equation (26) as The basic solution beccm.s (l7,p.l33).

u*( x(t) , t) — G(V (x (t) , t )) (27) 
V0(x,t) = tanh (T—t)x 2 (t)

Assuming the power series expansion of th . solution
The schematic repre sentation of the open—loop V(x, t) for small I lx ii, equat ion (13) becon.s

and closed loop nonl inear controllers are given in
Figure 1 and~Pigure 2 respectively . Figure 2 shows V(x,t) — V

0(x,t) + ~V1
(x.t) + ~

2V2(x
,t) +.. .+

that the nonlinear controller has been imbedded in-
to a hierarchy of subcontrollers.

~ iample Given: x — px3 
+ u; x(O) — 

— X0Ct)x 2 
+ cK3

(t)x4 
+ ~

2K2 (t)x6 
+...+

• su n  
~ 

(u + x +~~ t)x +...
2 2 1 

x4)dt. 
e~K3

( 2n+2
0

Here u is a small system parameter that has en-
tered the governing equation in a natural way. The Hence, we have
BJB equation for the system is 

V1(x,t) — E
3
(t)x4; V2(x.t) — 3C~ (t)x

61...,
8v 1 8v 2 2 ~V 3 1 x4; V (x(T),T) — 0-x  - U~~;X - •

~~

1 BV 
V (X,t) —

and the minimizing control: U~ — — 
2 

~~ Obviously the method of separation of variables
In order to apply the Fundamental Technique , (18] can be applied to obtain the solutions of the

let us proceed as follows : the auxil iary equat ion: higher approx imating equation s in the basic
1 av 2 ~V 2 structure.
1~ 

— — x ~~(x CT) .T) — • 
Using this , the second approximating equation

The nonlinear functional: FL2
(v ,x1 ~ p ~! ~ can be equivalently written as 

•x +
1 4 • dX

3
(t)

I The standard format: _____ — 4 tanh (T t) 1C1(t) — -(~~ + 2p tanh (T-t )),
l a V 2 ~V 2

~ V - - x + c FL2 IV,xJ ; VCX (T),T) — 0 15 (T) — 0

Observe that if FL2 (V ,x] is expanded in terms It may be noted that if we had used an ordinary
of p, the first approx imating equal of the basic series
structure (18) cannot be obtained . This must be V(x ,t )  — X

0
x2 + cxj (t)x 3 

+ c3K~ (t) x4 
+. . .+

of the same form as that of the auxiliary equation.
This is essential for the method to work. Hence 

~‘Ct) n+2
the straight-forward perturbation expansion sub— -

stitutions (12— 161 do not work. Thus the intro - then , separation of varia bL es in order to yield a
duction of C in a prop er way i~ essential. set of ordinary first order differential equations

Applying the methodology of the technique, we for 1(~ (t) .  K ( t) , . . .  would fail.
obtain the basic structure: The exact solution for 15 (t) is given as

4 3T 3t~0 1 av0 2 
~~~ x2 : V0

(X(T),T) — 0 15(t) — (l cosh (T—t) J + ( ( jg — +at

~~ 
1~~V1~~V~0 av 4 av

: I 5-
~~ ~~

__— - — + p —~~~~ x3
; V1(x (T),T ) 0  

+ sinh 2(T-t) + sinh 4(T-t)J cosh 4(T—t).

Hence, the function V1(x,t) becomes
2 1 av 2 av0 ,IaV1~

2 ~V2 av
T 3tC : ~ 

~~~~~~ 

+ 
~~~~~~~~~~~ 

— — Li ~
• v1

(x , t) — ~~
. x4(l-cosh 4(T—t)J + x4 ((fr — 

~~~~)  +

V2(xCT),T) = 0 + ~ ,
- sinh 2 (T— t) + sinh 4(T—t)3coah 4(T—t) .

n ~V av 8V BV —1 3 The suhoptiusa l feedback control is 
______

n l~~~ n— i ~
i t

C :  ___

V~ (x(T).T) — 0 n — 2.3.... ~~~ •
t — -

LL. A~~~~~~
. ~~~~ 

• . i



___________________________________  -- 
~~~~~

‘_________ - -

t 
. 6

_____ 

_______  

I
u*(x,t) — —(tan h (T-t)Jx + 2px3(l-cosh 4 (T—t)) + 14. Baldwin, J.F. and Sin Williams, 3.11., “The Use

of a Method of Perturbation in the Synthesis3 (3T—3t) 1+ X + I sinh(T-t) + sinh 4(T-t) ]. of Closed-Loop Optimal Control Laws for Non-
linear Systems”, Autematica (5), pp. 357—367

cosh 4(T—t) + ... 
• 

(1969) .

15. Nish ilcawa, N., Sanncsiya , N . ,  and Xtalcwa , H .,Cersuents and Conclusions: A systematic perturba- “A Method for Sub-Optimal Design of Nonlinear• tion method has been developed based on the Bell— Feedback Systems” , Automatica • Vol. 7, pp. 703—man Fundamental Technique of perturbation. The 712, 1971.
method can be applied to solve a class of nonlinear
analytic systems whose dependent variables (solu- 16. Lukes, D.L., “Optimal Regulations of Nonlinear
tion variables ) can be expanded in a regular per- Dynamical Systems ” , SIAM 3. Control, Vol. 7,
turbation series near the equilibrium .solution. No. 1, pp. 75—100, February 1969.
The salient feature of the method is that the aux- 17. Brockett , R.W. , Finite bizsensional Linear Sys—iliary equation used in the technique is nonlinear. tems, John Wiley (1970) .
Thus the central point of success of the method —

lies in choosing a suitable auxiliary equation 18. Tr eves, Francis , Basic Linear Partial Dif.ren—
(whose solution is known ) which should be as close tial Equations , Academic Press (1975) .
in form to the nonlinear problem to be solved as

“IIIpossible. • _e_.[
~~~~ II~]___._.___ ______ \
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